A non-smooth three critical points theorem with applications in differential inclusions

Alexandru Kristály • Waclaw Marzantowicz • Csaba Varga

Received: 22 December 2008 / Accepted: 7 February 2009 / Published online: 22 February 2009
© Springer Science+Business Media, LLC. 2009

Abstract

We extend a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications are given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole \mathbb{R}^{N}.

Keywords Locally Lipschitz functions • Critical points • Differential inclusions

1 Introduction and prerequisites

It is a simple exercise to show that a C^{1} function $f: \mathbb{R} \rightarrow \mathbb{R}$ having two local minima has necessarily a third critical point. However, once we are dealing with functions defined on a multi-dimensional space, the problem becomes much deeper. Motivated mostly by various real-life phenomena coming from Mechanics and Mathematical Physics, the latter problem has been treated by several authors, see Pucci-Serrin [13], Ricceri [14-17], Marano-Motreanu [10], Arcoya-Carmona [1], Bonanno [3,2], Bonanno-Candito [4].

The aim of the present paper is to give an extension of the very recent three critical points theorem of Ricceri [17] to locally Lipschitz functions, providing also two applications in partial differential inclusions; the first one for a non-homogeneous Neumann boundary value problem, the second one for a quasilinear elliptic inclusion problem in \mathbb{R}^{N}.

[^0]In order to do that, we recall two results which are crucial in our further investigations. The first result is due to Ricceri [18] guaranteeing the existence of two local minima for a parametric functional defined on a Banach space. Note that no smoothness assumption is required on the functional.

Theorem 1.1 ([18], Theorem 4) Let X be a real, reflexive Banach space, let $\Lambda \subseteq \mathbb{R}$ be an interval, and let $\varphi: X \times \Lambda \rightarrow \mathbb{R}$ be a function satisfying the following conditions:

1. $\varphi(x, \cdot)$ is concave in Λ for all $x \in X$;
2. $\varphi(\cdot, \lambda)$ is continuous, coercive and sequentially weakly lower semicontinuous in X for all $\lambda \in \Lambda$;
3. $\beta_{1}:=\sup _{\lambda \in \Lambda} \inf _{x \in X} \varphi(x, \lambda)<\inf _{x \in X} \sup _{\lambda \in \Lambda} \varphi(x, \lambda)=: \beta_{2}$.

Then, for each $\sigma>\beta_{1}$ there exists a non-empty open set $\Lambda_{0} \subset \Lambda$ with the following property: for every $\lambda \in \Lambda_{0}$ and every sequentially weakly lower semicontinuous function $\Phi: X \rightarrow \mathbb{R}$, there exists $\mu_{0}>0$ such that, for each $\left.\mu \in\right] 0, \mu_{0}[$, the function $\varphi(\cdot, \lambda)+\mu \Phi(\cdot)$ has at least two local minima lying in the set $\{x \in X: \varphi(x, \lambda)<\sigma\}$.

The second main tool in our argument is the "zero-altitude" Mountain Pass Theorem for locally Lipschitz functionals, due to Motreanu-Varga [12]. Before giving this result, we are going to recall some basic properties of the generalized directional derivative as well as of the generalized gradient of a locally Lipschitz functional which will be used later.

Let $(X,\|\cdot\|)$ be a Banach space.
Definition 1.1 A function $\Phi: X \rightarrow \mathbb{R}$ is locally Lipschitz if, for every $x \in X$, there exist a neighborhood U of x and a constant $L>0$ such that

$$
|\Phi(y)-\Phi(z)| \leq L\|y-z\| \quad \text { for all } y, z \in U
$$

Although it is not necessarily differentiable in the classical sense, a locally Lipschitz function admits a derivative, defined as follows:

Definition 1.2 The generalized directional derivative of Φ at the point $x \in X$ in the direction $y \in X$ is

$$
\Phi^{\circ}(x ; y)=\limsup _{z \rightarrow x, \tau \rightarrow 0^{+}} \frac{\Phi(z+\tau y)-\Phi(z)}{\tau} .
$$

The generalized gradient of Φ at $x \in X$ is the set

$$
\partial \Phi(x)=\left\{x^{\star} \in X^{\star}:\left\langle x^{\star}, y\right\rangle \leq \Phi^{\circ}(x ; y) \text { for all } y \in X\right\} .
$$

For all $x \in X$, the functional $\Phi^{\circ}(x, \cdot)$ is subadditive and positively homogeneous; thus, due to the Hahn-Banach theorem, the set $\partial \Phi(x)$ is nonempty. In the sequel, we resume the main properties of the generalized directional derivatives.

Lemma 1.1 [7] Let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be locally Lipschitz functions. Then,
(a) $\Phi^{\circ}(x ; y)=\max \{\langle\xi, y\rangle: \xi \in \partial \Phi(x)\}$;
(b) $(\Phi+\Psi)^{\circ}(x ; y) \leq \Phi^{\circ}(x ; y)+\Psi^{\circ}(x ; y)$;
(c) $(-\Phi)^{\circ}(x ; y)=\Phi^{\circ}(x ;-y)$; and $\Phi^{\circ}(x ; \lambda y)=\lambda \Phi^{\circ}(x ; y)$ for every $\lambda>0$;
(d) The function $(x, y) \mapsto \Phi^{\circ}(x ; y)$ is upper semicontinuous.

The next definition generalizes the notion of critical point to the non-smooth context:

Definition 1.3 [6] A point $x \in X$ is a critical point of $\Phi: X \rightarrow \mathbb{R}$, if $0 \in \partial \Phi(x)$, that is,

$$
\Phi^{\circ}(x ; y) \geq 0 \text { for all } y \in X
$$

For every $c \in \mathbb{R}$, we denote by $K_{c}=\{x \in X: 0 \in \partial \Phi(x), \Phi(x)=c\}$.
Remark 1.1 Note that every local extremum point of the locally Lipschitz function Φ is a critical point of Φ in the sense of Definition 1.3.

Definition 1.4 The locally Lipschitz function $\Phi: X \rightarrow \mathbb{R}$ satisfies the Palais-Smale condition at level $c \in \mathbb{R}$ (shortly, $(P S)_{c}$-condition), if every sequence $\left\{x_{n}\right\}$ in X such that
$\left(P S_{1}\right) \quad \Phi\left(x_{n}\right) \rightarrow c$ as $n \rightarrow \infty$;
$\left(P S_{2}\right)$ there exists a sequence $\left\{\varepsilon_{n}\right\}$ in $] 0,+\infty\left[\right.$ with $\varepsilon_{n} \rightarrow 0$ such that $\Phi^{\circ}\left(x_{n} ; y-x_{n}\right)+\varepsilon_{n}\left\|y-x_{n}\right\| \geq 0$ for all $y \in X, n \in \mathbb{N}$,
admits a convergent subsequence.
We recall now the zero-altitude version of the Mountain Pass Theorem, due to MotreanuVarga [12].

Theorem 1.2 Let $E: X \rightarrow \mathbb{R}$ be a locally Lipschitz function satisfying $(P S)_{c}$ for all $c \in \mathbb{R}$. If there exist $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ and $r \in\left(0,\left\|x_{2}-x_{1}\right\|\right)$ such that

$$
\inf \left\{E(x):\left\|x-x_{1}\right\|=r\right\} \geq \max \left\{E\left(x_{1}\right), E\left(x_{2}\right)\right\},
$$

and we denote by Γ the family of continuous paths $\gamma:[0,1] \rightarrow X$ joining x_{1} and x_{2}, then

$$
c:=\inf _{\gamma \in \Gamma} \max _{s \in[0,1]} E(\gamma(s)) \geq \max \left\{E\left(x_{1}\right), E\left(x_{2}\right)\right\}
$$

is a critical value for E and $K_{c} \backslash\left\{x_{1}, x_{2}\right\} \neq \emptyset$.

2 Main result: non-smooth Ricceri's multiplicity theorem

For every $\tau \geq 0$, we introduce the following class of functions:
$\left(\mathcal{G}_{\tau}\right): g \in C^{1}(\mathbb{R}, \mathbb{R})$ is bounded, and $g(t)=t$ for any $t \in[-\tau, \tau]$.
The main result of this paper is the following.
Theorem 2.1 Let $(X,\|\cdot\|)$ be a real reflexive Banach space and $\tilde{X}_{i}(i=1,2)$ be two Banach spaces such that the embeddings $X \hookrightarrow \tilde{X}_{i}$ are compact. Let Λ be a real interval, $h:[0, \infty) \rightarrow[0, \infty)$ be a non-decreasing convex function, and let $\Phi_{i}: \tilde{X}_{i} \rightarrow \mathbb{R}(i=1,2)$ be two locally Lipschitz functions such that $E_{\lambda, \mu}=h(\|\cdot\|)+\lambda \Phi_{1}+\mu g \circ \Phi_{2}$ restricted to X satisfies the $(P S)_{c}$-condition for every $c \in \mathbb{R}, \lambda \in \Lambda, \mu \in[0,|\lambda|+1]$ and $g \in \mathcal{G}_{\tau}, \tau \geq 0$. Assume that $h(\|\cdot\|)+\lambda \Phi_{1}$ is coercive on X for all $\lambda \in \Lambda$ and that there exists $\rho \in \mathbb{R}$ such that

$$
\begin{equation*}
\sup _{\lambda \in \Lambda} \inf _{x \in X}\left[h(\|x\|)+\lambda\left(\Phi_{1}(x)+\rho\right)\right]<\inf _{x \in X} \sup _{\lambda \in \Lambda}\left[h(\|x\|)+\lambda\left(\Phi_{1}(x)+\rho\right)\right] . \tag{2.1}
\end{equation*}
$$

Then, there exist a non-empty open set $A \subset \Lambda$ and $r>0$ with the property that for every $\lambda \in A$ there exists $\left.\left.\mu_{0} \in\right] 0,|\lambda|+1\right]$ such that, for each $\mu \in\left[0, \mu_{0}\right]$ the functional $\mathcal{E}_{\lambda, \mu}=$ $h(\|\cdot\|)+\lambda \Phi_{1}+\mu \Phi_{2}$ has at least three critical points in X whose norms are less than r.

Proof Since h is a non-decreasing convex function, $X \ni x \mapsto h(\|x\|)$ is also convex; thus, $h(\|\cdot\|)$ is sequentially weakly lower semicontinuous on X, see Brézis [5, Corollaire III.8]. From the fact that the embeddings $X \hookrightarrow \tilde{X}_{i}(i=1,2)$ are compact and $\Phi_{i}: \tilde{X}_{i} \rightarrow$ $\mathbb{R}(i=1,2)$ are locally Lipschitz functions, it follows that the function $E_{\lambda, \mu}$ as well as $\varphi: X \times \Lambda \rightarrow \mathbb{R}$ (in the first variable) given by

$$
\varphi(x, \lambda)=h(\|x\|)+\lambda\left(\Phi_{1}(x)+\rho\right)
$$

are sequentially weakly lower semicontinuous on X.
The function φ satisfies the hypotheses of Theorem 1.1. Fix $\sigma>\sup _{\Lambda} \inf _{X} \varphi$ and consider a nonempty open set Λ_{0} with the property expressed in Theorem 1.1. Let $A=[a, b] \subset \Lambda_{0}$.

Fix $\lambda \in[a, b]$; then, for every $\tau \geq 0$ and $g_{\tau} \in \mathcal{G}_{\tau}$, there exists $\mu_{\tau}>0$ such that, for any $\mu \in] 0, \mu_{\tau}\left[\right.$, the functional $E_{\lambda, \mu}^{\tau}=h(\|\cdot\|)+\lambda \Phi_{1}+\mu g_{\tau} \circ \Phi_{2}$ restricted to X has two local minima, say x_{1}^{τ}, x_{2}^{τ}, lying in the set $\{x \in X: \varphi(x, \lambda)<\sigma\}$.

Note that

$$
\begin{aligned}
\bigcup_{\lambda \in[a, b]}\{x \in X: \varphi(x, \lambda)<\sigma\} \subset & \left\{x \in X: h(\|x\|)+a \Phi_{1}(x)<\sigma-a \rho\right\} \\
& \cup\left\{x \in X: h(\|x\|)+b \Phi_{1}(x)<\sigma-b \rho\right\} .
\end{aligned}
$$

Because the function $h(\|\cdot\|)+\lambda \Phi_{1}$ is coercive on X, the set on the right-side is bounded. Consequently, there is some $\eta>0$, such that

$$
\begin{equation*}
\bigcup_{\lambda \in[a, b]}\{x \in X: \varphi(x, \lambda)<\sigma\} \subset B_{\eta}, \tag{2.2}
\end{equation*}
$$

where $B_{\eta}=\{x \in X:\|x\|<\eta\}$. Therefore,

$$
x_{1}^{\tau}, x_{2}^{\tau} \in B_{\eta} .
$$

Now, set $c^{\star}=\sup _{t \in[0, \eta]} h(t)+\max \{|a|,|b|\} \sup _{B_{\eta}}\left|\Phi_{1}\right|$ and fix $r>\eta$ large enough such that for any $\lambda \in[a, b]$ to have

$$
\begin{equation*}
\left\{x \in X: h(\|x\|)+\lambda \Phi_{1}(x) \leq c^{\star}+2\right\} \subset B_{r} . \tag{2.3}
\end{equation*}
$$

Let $r^{\star}=\sup _{B_{r}}\left|\Phi_{2}\right|$ and correspondingly, fix a function $g=g_{r^{*}} \in \mathcal{G}_{r^{*}}$. Let us define B_{r}
$\mu_{0}=\min \left\{|\lambda|+1, \frac{1}{1+\sup |g|}\right\}$. Since the functional $E_{\lambda, \mu}=E_{\lambda, \mu}^{r^{*}}=h(\|\cdot\|)+\lambda \Phi_{1}+$ $\mu g_{r^{*}} \circ \Phi_{2}$ restricted to X satisfies the $(P S)_{c}$ condition for every $c \in \mathbb{R}, \mu \in\left[0, \mu_{0}\right]$, and $x_{1}=x_{1}^{r^{*}}, x_{2}=x_{2}^{r^{*}}$ are local minima of $E_{\lambda, \mu}$, we may apply Theorem 1.2, obtaining that

$$
\begin{equation*}
c_{\lambda, \mu}=\inf _{\gamma \in \Gamma} \max _{s \in[0,1]} E_{\lambda, \mu}(\gamma(s)) \geq \max \left\{E_{\lambda, \mu}\left(x_{1}\right), E_{\lambda, \mu}\left(x_{2}\right)\right\} \tag{2.4}
\end{equation*}
$$

is a critical value for $E_{\lambda, \mu}$, where Γ is the family of continuous paths $\gamma:[0,1] \rightarrow X$ joining x_{1} and x_{2}. Therefore, there exists $x_{3} \in X$ such that

$$
c_{\lambda, \mu}=E_{\lambda, \mu}\left(x_{3}\right) \quad \text { and } 0 \in \partial E_{\lambda, \mu}\left(x_{3}\right) .
$$

If we consider the path $\gamma \in \Gamma$ given by $\gamma(s)=x_{1}+s\left(x_{2}-x_{1}\right) \subset B_{\eta}$ we have

$$
\begin{aligned}
h\left(\left\|x_{3}\right\|\right)+\lambda \Phi_{1}\left(x_{3}\right) & =E_{\lambda, \mu}\left(x_{3}\right)-\mu g\left(\Phi_{2}\left(x_{3}\right)\right) \\
& =c_{\lambda, \mu}-\mu g\left(\Phi_{2}\left(x_{3}\right)\right) \\
& \leq \sup _{s \in[0,1]}\left(h(\|\gamma(s)\|)+\lambda \Phi_{1}(\gamma(s))+\mu g\left(\Phi_{2}(\gamma(s))\right)\right)-\mu g\left(\Phi_{2}\left(x_{3}\right)\right) \\
& \leq \sup _{t \in[0, \eta]} h(t)+\max \{|a|,|b|\} \sup _{B_{\eta}}\left|\Phi_{1}\right|+2 \mu_{0} \sup |g| \\
& \leq c^{\star}+2 .
\end{aligned}
$$

From (2.3) it follows that $x_{3} \in B_{r}$. Therefore, $x_{i}, i=1,2,3$ are critical points for $E_{\lambda, \mu}$, all belonging to the ball B_{r}. It remains to prove that these elements are critical points not only for $E_{\lambda, \mu}$ but also for $\mathcal{E}_{\lambda, \mu}=h(\|\cdot\|)+\lambda \Phi_{1}+\mu \Phi_{2}$. Let $x=x_{i}, i \in\{1,2,3\}$. Since $x \in B_{r}$, we have that $\left|\Phi_{2}(x)\right| \leq r^{*}$. Note that $g(t)=t$ on $\left[-r^{*}, r^{*}\right]$; thus, $g\left(\Phi_{2}(x)\right)=\Phi_{2}(x)$. Consequently, on the open set B_{r} the functionals $E_{\lambda, \mu}$ and $\mathcal{E}_{\lambda, \mu}$ coincide, which completes the proof.

3 Applications

3.1 A differential inclusion with non-homogeneous boundary condition

Let Ω be a non-empty, bounded, open subset of the real Euclidian space \mathbb{R}^{N}, $N \geq 3$, having a smooth boundary $\partial \Omega$ and let $W^{1,2}(\Omega)$ be the closure of $C^{\infty}(\Omega)$ with the respect to the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{2}+\int_{\Omega} u^{2}(x)\right)^{1 / 2} .
$$

Denote by $2^{\star}=\frac{2 N}{N-2}$ and $\overline{2}^{\star}=\frac{2(N-1)}{N-2}$ the critical Sobolev exponent for the embedding $W^{1,2}(\Omega) \hookrightarrow L^{p}(\Omega)$ and for the trace mapping $W^{1,2}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$, respectively. If $p \in\left[1,2^{\star}\right]$ then the embedding $W^{1,2}(\Omega) \hookrightarrow L^{p}(\Omega)$ is continuous while if $p \in\left[1,2^{\star}[\right.$, it is compact. In the same way for $q \in\left[1, \overline{2}^{\star}\right], W^{1,2}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ is continuous, and for $q \in\left[1, \overline{2}^{\star}\left[\right.\right.$ it is compact. Therefore, there exist constants $c_{p}, \bar{c}_{q}>0$ such that

$$
\|u\|_{L^{p}(\Omega)} \leq c_{p}\|u\|, \text { and }\|u\|_{L^{q}(\partial \Omega)} \leq \bar{c}_{q}\|u\|, \quad \forall u \in W^{1,2}(\Omega) .
$$

Now, we consider a locally Lipschitz function $F: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies the following conditions:
(F0) $F(0)=0$ and there exists $C_{1}>0$ and $p \in\left[1,2^{\star}[\right.$ such that

$$
\begin{equation*}
|\xi| \leq C_{1}\left(1+|t|^{p-1}\right), \quad \forall \xi \in \partial F(t), \quad t \in \mathbb{R} ; \tag{3.1}
\end{equation*}
$$

(F1) $\lim _{t \rightarrow 0} \frac{\max \{|\xi|: \xi \in \partial F(t)\}}{t}=0$;
(F2) $\limsup _{|t| \rightarrow+\infty} \frac{F(t)}{t^{2}} \leq 0$;
(F3) There exists $\tilde{t} \in \mathbb{R}$ such that $F(\tilde{t})>0$.
Example 3.1 Let $p \in] 1,2]$ and $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $F(t)=\min \left\{|t|^{p+1}\right.$, $\left.\arctan \left(t_{+}\right)\right\}$, where $t_{+}=\max \{t, 0\}$. The function F enjoys properties ($\mathbf{F 0} \mathbf{-} \mathbf{F}$).

Let also $G: \mathbb{R} \rightarrow \mathbb{R}$ be another locally Lipschitz function satisfying the following condition:
(G) There exists $C_{2}>0$ and $q \in\left[1, \overline{2}^{\star}[\right.$ such that

$$
\begin{equation*}
|\xi| \leq C_{2}\left(1+|t|^{q-1}\right), \quad \forall \xi \in \partial G(t), \quad t \in \mathbb{R} . \tag{3.2}
\end{equation*}
$$

For $\lambda, \mu>0$, we consider the following differential inclusion problem, with inhomogeneous Neumann condition:

$$
\left(P_{\lambda, \mu}\right) \quad \begin{cases}-\Delta u+u \in \lambda \partial F(u(x)) & \text { in } \Omega \\ \frac{\partial u}{\partial n} \in \mu \partial G(u(x)) & \text { on } \partial \Omega\end{cases}
$$

Definition 3.1 We say that $u \in W^{1,2}(\Omega)$ is a solution of the problem $\left(P_{\lambda, \mu}\right)$, if there exist $\xi_{F}(x) \in \partial F(u(x))$ and $\xi_{G}(x) \in \partial G(u(x))$ for a.e. $x \in \Omega$ such that for all $v \in W^{1,2}(\Omega)$ we have

$$
\int_{\Omega}(-\Delta u+u) v \mathrm{~d} x=\lambda \int_{\Omega} \xi_{F} v \mathrm{~d} x \quad \text { and } \int_{\partial \Omega} \frac{\partial u}{\partial n} v \mathrm{~d} \sigma=\mu \int_{\partial \Omega} \xi_{G} v d \sigma .
$$

The main result of this section reads as follows.
Theorem 3.1 Let $F, G: \mathbb{R} \rightarrow \mathbb{R}$ be two locally Lipschitz functions satisfying the conditions (F0-F3) and (G). Then there exists a non-degenerate compact interval $[a, b] \subset] 0,+\infty[$ and a number $r>0$, such that for every $\lambda \in[a, b]$ there exists $\left.\left.\mu_{0} \in\right] 0, \lambda+1\right]$ such that for each $\mu \in\left[0, \mu_{0}\right]$, the problem $\left(P_{\lambda, \mu}\right)$ has at least three distinct solutions with $W^{1,2}$-norms less than r.

In the sequel, we are going to prove Theorem 3.1, assuming from now one that its assumptions are verified.

Since F, G are locally Lipschitz, it follows trough (3.1) and (3.2) in a standard way that $\Phi_{1}: L^{p}(\Omega) \rightarrow \mathbb{R}\left(p \in\left[1,2^{\star}\right]\right)$ and $\Phi_{2}: L^{q}(\partial \Omega) \rightarrow \mathbb{R}\left(q \in\left[1, \overline{2}^{\star}\right]\right)$ defined by
$\Phi_{1}(u)=-\int_{\Omega} F(u(x)) \mathrm{d} x \quad\left(u \in L^{p}(\Omega)\right)$ and $\Phi_{2}(u)=-\int_{\partial \Omega} G(u(x)) \mathrm{d} \sigma\left(u \in L^{q}(\partial \Omega)\right)$ are well-defined, locally Lipschitz functionals and due to Clarke [7, Theorem 2.7.5], we have $\partial \Phi_{1}(u) \subseteq-\int_{\Omega} \partial F(u(x)) \mathrm{d} x \quad\left(u \in L^{p}(\Omega)\right), \quad \partial \Phi_{2}(u) \subseteq-\int_{\partial \Omega} \partial G(u(x)) d \sigma \quad\left(u \in L^{q}(\partial \Omega)\right)$.
We introduce the energy functional $\mathcal{E}_{\lambda, \mu}: W^{1,2}(\Omega) \rightarrow \mathbb{R}$ associated to the problem $\left(P_{\lambda, \mu}\right)$, given by

$$
\mathcal{E}_{\lambda, \mu}(u)=\frac{1}{2}\|u\|^{2}+\lambda \Phi_{1}(u)+\mu \Phi_{2}(u), \quad u \in W^{1,2}(\Omega) .
$$

Using the latter inclusions and the Green formula, the critical points of the functional $\mathcal{E}_{\lambda, \mu}$ are solutions of the problem $\left(P_{\lambda, \mu}\right)$ in the sense of Definition 3.1. Before proving Theorem 3.1, we need the following auxiliary result.

Proposition 3.1 $\lim _{t \rightarrow 0^{+}} \frac{\inf \left\{\Phi_{1}(u): u \in W^{1,2}(\Omega),\|u\|^{2}<2 t\right\}}{t}=0$.

Proof Fix $\tilde{p} \in] \max \{2, p\}, 2^{\star}$. Applying Lebourg's mean value theorem and using (F0) and (F1), for any $\varepsilon>0$, there exists $K(\varepsilon)>0$ such that

$$
\begin{equation*}
|F(t)| \leq \varepsilon t^{2}+K(\varepsilon)|t|^{\tilde{p}} \quad \text { for all } t \in \mathbb{R} . \tag{3.3}
\end{equation*}
$$

Taking into account (3.3) and the continuous embedding $W^{1,2}(\Omega) \hookrightarrow L^{\tilde{p}}(\Omega)$ we have

$$
\begin{equation*}
\Phi_{1}(u) \geq-\varepsilon c_{2}^{2}\|u\|^{2}-K(\varepsilon) c_{\tilde{p}}^{\tilde{p}}\|u\|^{\tilde{p}}, \quad u \in W^{1,2}(\Omega) . \tag{3.4}
\end{equation*}
$$

For $t>0$ define the set $S_{t}=\left\{u \in W^{1,2}(\Omega):\|u\|^{2}<2 t\right\}$. Using (3.4) we have

$$
0 \geq \frac{\inf _{u \in S_{t}} \Phi_{1}(u)}{t} \geq-2 c_{2}^{2} \varepsilon-2^{\tilde{p} / 2} K(\varepsilon) c_{\tilde{p}}^{\tilde{p}} t^{\tilde{p}-1}
$$

Since $\varepsilon>0$ is arbitrary and since $t \rightarrow 0^{+}$, we get the desired limit.
Proof of Theorem 3.1 Let us define the function for every $t>0$ by

$$
\beta(t)=\inf \left\{\Phi_{1}(u): u \in W^{1,2}(\Omega), \frac{\|u\|^{2}}{2}<t\right\} .
$$

We have that $\beta(t) \leq 0$, for $t>0$, and Proposition 3.1 yields that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{\beta(t)}{t}=0 . \tag{3.5}
\end{equation*}
$$

We consider the constant function $u_{0} \in W^{1,2}(\Omega)$ by $u_{0}(x)=\tilde{t}$ for every $x \in \Omega, \tilde{t}$ being from (F3). Note that $\tilde{t} \neq 0$ (since $F(0)=0$), so $\Phi_{1}\left(u_{0}\right)<0$. Therefore it is possible to choose a number $\eta>0$ such that

$$
0<\eta<-\Phi_{1}\left(u_{0}\right)\left[\frac{\left\|u_{0}\right\|^{2}}{2}\right]^{-1} .
$$

By (3.5) we get the existence of a number $t_{0} \in\left(0, \frac{\left\|u_{0}\right\|^{2}}{2}\right)$ such that $-\beta\left(t_{0}\right)<\eta t_{0}$. Thus

$$
\begin{equation*}
\beta\left(t_{0}\right)>\left[\frac{\left\|u_{0}\right\|^{2}}{2}\right]^{-1} \Phi_{1}\left(u_{0}\right) t_{0} \tag{3.6}
\end{equation*}
$$

Due to the choice of t_{0} and using (3.6), we conclude that there exists $\rho_{0}>0$ such that

$$
\begin{equation*}
-\beta\left(t_{0}\right)<\rho_{0}<-\Phi_{1}\left(u_{0}\right)\left[\frac{\left\|u_{0}\right\|^{2}}{2}\right]^{-1} t_{0}<-\Phi_{1}\left(u_{0}\right) \tag{3.7}
\end{equation*}
$$

Define now the function $\varphi: W^{1,2}(\Omega) \times \mathbb{I} \rightarrow \mathbb{R}$ by

$$
\varphi(u, \lambda)=\frac{\|u\|^{2}}{2}+\lambda \Phi_{1}(u)+\lambda \rho_{0},
$$

where $\mathbb{I}=[0,+\infty)$. We prove that the function φ satisfies the inequality

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{I}} \inf _{u \in W^{1,2}(\Omega)} \varphi(u, \lambda)<\inf _{u \in W^{1,2}(\Omega)} \sup _{\lambda \in \mathbb{I}} \varphi(u, \lambda) . \tag{3.8}
\end{equation*}
$$

The function

$$
\mathbb{I} \ni \lambda \mapsto \inf _{u \in W^{1,2}(\Omega)}\left[\frac{\|u\|^{2}}{2}+\lambda\left(\rho_{0}+\Phi_{1}(u)\right)\right]
$$

is obviously upper semicontinuous on \mathbb{I}. It follows from (3.7) that

$$
\lim _{\lambda \rightarrow+\infty} \inf _{u \in W^{1,2}(\Omega)} \varphi(u, \lambda) \leq \lim _{\lambda \rightarrow+\infty}\left[\frac{\left\|u_{0}\right\|^{2}}{2}+\lambda\left(\rho_{0}+\Phi_{1}\left(u_{0}\right)\right)\right]=-\infty .
$$

Thus we find an element $\bar{\lambda} \in \mathbb{I}$ such that

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{I} u \in W^{1,2}(\Omega)} \inf \varphi(u, \lambda)=\inf _{u \in W^{1,2}(\Omega)}\left[\frac{\|u\|^{2}}{2}+\bar{\lambda}\left(\rho_{0}+\Phi_{1}(u)\right)\right] . \tag{3.9}
\end{equation*}
$$

Since $-\beta\left(t_{0}\right)<\rho_{0}$, it follows from the definition of β that for all $u \in W^{1,2}(\Omega)$ with $\frac{\|u\|^{2}}{2}<t_{0}$ we have $-\Phi_{1}(u)<\rho_{0}$. Hence

$$
\begin{equation*}
t_{0} \leq \inf \left\{\frac{\|u\|^{2}}{2}: u \in W^{1,2}(\Omega),-\Phi_{1}(u) \geq \rho_{0}\right\} . \tag{3.10}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\inf _{u \in W^{1,2}(\Omega)} \sup _{\lambda \in \mathbb{I}} \varphi(u, \lambda) & =\inf _{u \in W^{1,2}(\Omega)}\left[\frac{\|u\|^{2}}{2}+\sup _{\lambda \in \mathbb{I}}\left(\lambda\left(\rho_{0}+\Phi_{1}(u)\right)\right)\right] \\
& =\inf _{u \in W^{1,2}(\Omega)}\left\{\frac{\|u\|^{2}}{2}:-\Phi_{1}(u) \geq \rho_{0}\right\}
\end{aligned}
$$

Thus inequality (3.10) is equivalent to

$$
\begin{equation*}
t_{0} \leq \inf _{u \in W^{1,2}(\Omega)} \sup _{\lambda \in \mathbb{I}} \varphi(u, \lambda) . \tag{3.11}
\end{equation*}
$$

We consider two cases. First, when $0 \leq \bar{\lambda}<\frac{t_{0}}{\rho_{0}}$, then we have that

$$
\inf _{u \in W^{1,2}(\Omega)}\left[\frac{\|u\|^{2}}{2}+\bar{\lambda}\left(\rho_{0}+\Phi_{1}(u)\right)\right] \leq \varphi(0, \bar{\lambda})=\bar{\lambda} \rho_{0}<t_{0} .
$$

Combining this inequality with (3.9) and (3.11) we obtain (3.8).
Now, if $\frac{t_{0}}{\rho_{0}} \leq \bar{\lambda}$, then from (3.6) and (3.7), it follows that

$$
\begin{aligned}
\inf _{u \in W^{1,2}(\Omega)}\left[\frac{\|u\|^{2}}{2}+\bar{\lambda}\left(\rho_{0}+\Phi_{1}(u)\right)\right] & \leq \frac{\left\|u_{0}\right\|^{2}}{2}+\bar{\lambda}\left(\rho_{0}+\Phi_{1}\left(u_{0}\right)\right) \\
& \leq \frac{\left\|u_{0}\right\|^{2}}{2}+\frac{t_{0}}{\rho_{0}}\left(\rho_{0}+\Phi_{1}\left(u_{0}\right)\right)<t_{0}
\end{aligned}
$$

It remains to apply again (3.9) and (3.11), which concludes the proof of (3.8).
Now, we are in the position to apply Theorem 2.1 ; we choose $X=W^{1,2}(\Omega), \tilde{X}_{1}=L^{p}(\Omega)$ with $p \in\left[1,2^{*}\left[, \tilde{X}_{2}=L^{q}(\partial \Omega)\right.\right.$ with $q \in\left[1, \overline{2}^{*}\left[, \Lambda=\mathbb{I}=[0,+\infty), h(t)=t^{2} / 2, t \geq 0\right.\right.$.

Now, we fix $g \in \mathcal{G}_{\tau}(\tau \geq 0), \lambda \in \Lambda, \mu \in[0, \lambda+1]$, and $c \in \mathbb{R}$. We shall prove that the functional $E_{\lambda, \mu}: W^{1,2}(\Omega) \rightarrow \mathbb{R}$ given by

$$
E_{\lambda, \mu}(u)=\frac{1}{2}\|u\|^{2}+\lambda \Phi_{1}(u)+\mu\left(g \circ \Phi_{2}\right)(u), \quad u \in W^{1,2}(\Omega),
$$

satisfies the $(P S)_{c}$. Note that due to Lemma 1.1, we have for every $u, v \in W^{1,2}(\Omega)$ that

$$
\begin{equation*}
E_{\lambda, \mu}^{\circ}(u ; v) \leq\langle u, v\rangle_{W^{1,2}}+\lambda \Phi_{1}^{\circ}(u ; v)+\mu\left(g \circ \Phi_{2}\right)^{\circ}(u ; v) . \tag{3.12}
\end{equation*}
$$

First of all, let us observe that $\frac{1}{2}\|\cdot\|^{2}+\lambda \Phi_{1}$ is coercive on $W^{1,2}(\Omega)$, due to (F2); thus, the functional $E_{\lambda, \mu}$ is also coercive on $W^{1,2}(\Omega)$. Consequently, it is enough to consider a bounded sequence $\left\{u_{n}\right\} \subset W^{1,2}(\Omega)$ such that

$$
\begin{equation*}
E_{\lambda, \mu}^{\circ}\left(u_{n} ; v-u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \text { for all } v \in W^{1,2}(\Omega), \tag{3.13}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ is a positive sequence such that $\varepsilon_{n} \rightarrow 0$. Because the sequence $\left\{u_{n}\right\}$ is bounded, there exists an element $u \in W^{1,2}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W^{1,2}(\Omega), u_{n} \rightarrow u$ strongly in $L^{p}(\Omega), p \in\left[1,2^{*}\left[\right.\right.$ (since $W^{1,2}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact), and $u_{n} \rightarrow u$ strongly in $L^{q}(\partial \Omega), q \in\left[1, \overline{2}^{*}\left[\right.\right.$ (since $W^{1,2}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ is compact). Using (3.13) with $v=u$ and apply relation (3.12) for the pairs $\left(u_{n}, u-u_{n}\right)$ and $\left(u, u_{n}-u\right)$, we have that

$$
\begin{aligned}
\left\|u-u_{n}\right\|^{2} \leq & \varepsilon_{n}\left\|u-u_{n}\right\|-E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right)+\lambda\left[\Phi_{1}^{\circ}\left(u_{n} ; u-u_{n}\right)+\Phi_{1}^{\circ}\left(u ; u_{n}-u\right)\right] \\
& +\mu\left[\left(g \circ \Phi_{2}\right)^{\circ}\left(u_{n} ; u-u_{n}\right)+\left(g \circ \Phi_{2}\right)^{\circ}\left(u ; u_{n}-u\right)\right] .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded in $W^{1,2}(\Omega)$, we clearly have that $\lim _{n \rightarrow \infty} \varepsilon_{n}\left\|u-u_{n}\right\|=0$. Now, fix $z^{*} \in \partial E_{\lambda, \mu}^{\circ}(u)$; in particular, we have $\left\langle z^{*}, u_{n}-u\right\rangle_{W^{1,2}} \leq E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right)$. Since $u_{n} \rightharpoonup u$ weakly in $W^{1,2}(\Omega)$, we have that $\lim \inf _{n \rightarrow \infty} E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right) \geq 0$. Now, for the remaining four terms in the above estimation we use the fact that $\Phi_{1}^{\circ}(\cdot ; \cdot)$ and $\left(g \circ \Phi_{2}\right)^{\circ}(\cdot ; \cdot)$ are upper semicontinuous functions on $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$, respectively. Since $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$, we have for instance $\lim \sup _{n \rightarrow \infty} \Phi_{1}^{\circ}\left(u_{n} ; u-u_{n}\right) \leq \Phi_{1}^{\circ}(u ; 0)=0$; the remaining terms are similar. Combining the above outcomes, we obtain finally that lim sup ${ }_{n \rightarrow \infty}$ $\left\|u-u_{n}\right\|^{2} \leq 0$, i.e., $u_{n} \rightarrow u$ strongly in $W^{1,2}(\Omega)$. It remains to apply Theorem 2.1 in order to obtain the conclusion.

Remark 3.1 Marano and Papageorgiou [11] studied a similar problem to $\left(P_{\lambda, \mu}\right)$ by considering the homogeneous case when $G=0$ and the p-Laplacian operator Δ_{p} instead of the standard Laplacian \triangle. By using a non-smooth mountain pass type argument (with zero altitude), they guaranteed the existence of solutions for the studied problem.

3.2 A differential inclusion in \mathbb{R}^{N}

Let $p>2$ and $F: \mathbb{R} \rightarrow \mathbb{R}$ be a locally Lipschitz function such that
($\tilde{\mathbf{F}} 1) \quad \lim _{t \rightarrow 0} \frac{\max \{|\xi|: \xi \in \partial F(t)\}}{|t|^{p-1}}=0 ;$
($\tilde{\mathbf{F}} 2) \quad \limsup _{|t| \rightarrow+\infty} \frac{F(t)}{|t|^{p}} \leq 0$;
($\tilde{\mathbf{F}} 3) \quad$ There exists $\tilde{t} \in \mathbb{R}$ such that $F(\tilde{t})>0$, and $F(0)=0$.

In this section we are going to study the differential inclusion problem

$$
\left(\tilde{P}_{\lambda, \mu}\right) \quad\left\{\begin{array}{l}
-\Delta_{p} u+|u|^{p-2} u \in \lambda \alpha(x) \partial F(u(x))+\mu \beta(x) \partial G(u(x)) \quad \text { on } \mathbb{R}^{N}, \\
u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty,
\end{array}\right.
$$

where $p>N \geq 2$, the numbers λ, μ are positive, and $G: \mathbb{R} \rightarrow \mathbb{R}$ is any locally Lipschitz function. Furthermore, we assume that $\beta \in L^{1}\left(\mathbb{R}^{N}\right)$ is any function, and
$(\tilde{\alpha}) \alpha \in L^{1}\left(\mathbb{R}^{N}\right) \cap L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{N}\right), \alpha \geq 0$, and $\sup _{R>0} \operatorname{essinf}_{|x| \leq R} \alpha(x)>0$.
The functional space where our solutions are going to be sought is the usual Sobolev space $W^{1, p}\left(\mathbb{R}^{N}\right)$, endowed with the norm $\|u\|=\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{p}+\int_{\mathbb{R}^{N}}|u(x)|^{p}\right)^{1 / p}$.

Definition 3.2 We say that $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$ is a solution of problem ($\tilde{P}_{\lambda, \mu}$), if there exist $\xi_{F}(x) \in \partial F(u(x))$ and $\xi_{G}(x) \in \partial G(u(x))$ for a. e. $x \in \mathbb{R}^{N}$ such that for all $v \in W^{1, p}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p-2} \nabla u \nabla v+|u|^{p-2} u v\right) \mathrm{d} x=\lambda \int_{\mathbb{R}^{N}} \alpha(x) \xi_{F} v \mathrm{~d} x+\mu \int_{\mathbb{R}^{N}} \beta(x) \xi_{G} v \mathrm{~d} x . \tag{3.14}
\end{equation*}
$$

Remark 3.2 (a) The terms in the right hand side of (3.14) are well-defined. Indeed, due to Morrey's embedding theorem, i.e., $W^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right)$ is continuous $(p>N)$, we have $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$. Thus, there exists a compact interval $I_{u} \subset \mathbb{R}$ such that $u(x) \in I_{u}$ for a.e. $x \in \mathbb{R}^{N}$. Since the set-valued mapping ∂F is upper-semicontinuous, the set $\partial F\left(I_{u}\right) \subset \mathbb{R}$ is bounded; let $C_{F}=\sup \left|\partial F\left(I_{u}\right)\right|$. Therefore,

$$
\left|\int_{\mathbb{R}^{N}} \alpha(x) \xi_{F} v \mathrm{~d} x\right| \leq C_{F}\|\alpha\|_{L^{1}}\|v\|_{\infty}<\infty .
$$

Similar argument holds for the function G.
(b) Since $p>N$, any element $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$ is homoclinic, i.e., $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$, see Brézis [5, Théorème IX.12].

The main result of this section is
Theorem 3.2 Assume that $p>N \geq 2$. Let $\alpha, \beta \in L^{1}\left(\mathbb{R}^{N}\right)$ be two radial functions, α fulfilling ($\tilde{\alpha}$), and let $F, G: \mathbb{R} \rightarrow \mathbb{R}$ be two locally Lipschitz functions, F satisfying the conditions $(\tilde{\mathbf{F}} 1-\tilde{\mathbf{F}} 3)$. Then there exists a non-degenerate compact interval $[a, b] \subset] 0,+\infty[$ and a number $\tilde{r}>0$, such that for every $\lambda \in[a, b]$ there exists $\left.\left.\mu_{0} \in\right] 0, \lambda+1\right]$ such that for each $\mu \in\left[0, \mu_{0}\right]$, the problem ($\tilde{P}_{\lambda, \mu}$) has at least three distinct, radially symmetric solutions with L^{∞}-norms less than \tilde{r}.

Note that no hypothesis on the growth of G is assumed; therefore, the last term in ($\tilde{P}_{\lambda, \mu}$) may have an arbitrary growth. However, assumption ($\tilde{\alpha}$) together with ($\tilde{\mathbf{F}} 3$) guarantee the existence of non-trivial solutions for $\left(\tilde{P}_{\lambda, \mu}\right)$.

The proof of Theorem 3.2 is similar to that of Theorem 3.1; we will show only the differences. To do that, we introduce some notions and preliminary results.

Although the embedding $W^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right)$ is continuous (due to Morrey's theorem ($p>N$)), it is not compact. We overcome this gap by introducing the subspace of radially symmetric functions of $W^{1, p}\left(\mathbb{R}^{N}\right)$. The action of the orthogonal group $O(N)$ on $W^{1, p}\left(\mathbb{R}^{N}\right)$ can be defined by $(g u)(x)=u\left(g^{-1} x\right)$, for every $g \in O(N), u \in W^{1, p}\left(\mathbb{R}^{N}\right), x \in \mathbb{R}^{N}$. It is clear that this group acts linearly and isometrically; in particular $\|g u\|=\|u\|$ for every $g \in O(N)$ and $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$. Defining the subspace of radially symmetric functions of $W^{1, p}\left(\mathbb{R}^{N}\right)$ by

$$
W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)=\left\{u \in W^{1, p}\left(\mathbb{R}^{N}\right): g u=u \text { for all } g \in O(N)\right\}
$$

we can state the following result.
Proposition 3.2 [9] The embedding $W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right)$ is compact whenever $2 \leq N<$ $p<\infty$.

Let $\Phi_{1}, \Phi_{2}: L^{\infty}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ be defined by

$$
\Phi_{1}(u)=-\int_{\mathbb{R}^{N}} \alpha(x) F(u(x)) \mathrm{d} x \quad \text { and } \quad \Phi_{2}(u)=-\int_{\mathbb{R}^{N}} \beta(x) G(u(x)) \mathrm{d} x .
$$

Since $\alpha, \beta \in L^{1}\left(\mathbb{R}^{N}\right)$, the functionals Φ_{1}, Φ_{2} are well-defined and locally Lipschitz, see Clarke [7, p. 79-81]. Moreover, we have

$$
\partial \Phi_{1}(u) \subseteq-\int_{\mathbb{R}^{N}} \alpha(x) \partial F(u(x)) \mathrm{d} x, \quad \partial \Phi_{2}(u) \subseteq-\int_{\mathbb{R}^{N}} \beta(x) \partial G(u(x)) \mathrm{d} x .
$$

The energy functional $\mathcal{E}_{\lambda, \mu}: W^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ associated to problem $\left(\tilde{P}_{\lambda, \mu}\right)$, is given by

$$
\mathcal{E}_{\lambda, \mu}(u)=\frac{1}{p}\|u\|^{p}+\lambda \Phi_{1}(u)+\mu \Phi_{2}(u), \quad u \in W^{1, p}\left(\mathbb{R}^{N}\right) .
$$

It is clear that the critical points of the functional $\mathcal{E}_{\lambda, \mu}$ are solutions of the problem $\left(\tilde{P}_{\lambda, \mu}\right)$ in the sense of Definition 3.2; for a similar argument, see Kristály [9].

Since α, β are radially symmetric, then $\mathcal{E}_{\lambda, \mu}$ is $O(N)$-invariant, i.e. $\mathcal{E}_{\lambda, \mu}(g u)=\mathcal{E}_{\lambda, \mu}(u)$ for every $g \in O(N)$ and $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$. Therefore, we may apply a non-smooth version of the principle of symmetric criticality, proved by Krawcewicz-Marzantowicz [8], whose form in our setting is as follows.

Proposition 3.3 Any critical point of $\mathcal{E}_{\lambda, \mu}^{\mathrm{rad}}=\left.\mathcal{E}_{\lambda, \mu}\right|_{W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)}$ will be also a critical point of $\mathcal{E}_{\lambda, \mu}$.

The following result can be compared with Proposition 3.1, although their proofs are different.
Proposition $3.4 \lim _{t \rightarrow 0^{+}} \frac{\inf \left\{\Phi_{1}(u): u \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right),\|u\|^{p}<p t\right\}}{t}=0$.
Proof Due to $(\tilde{\mathbf{F}} 1)$, for every $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
|\xi| \leq \varepsilon|t|^{p-1}, \quad \forall t \in[-\delta(\varepsilon), \delta(\varepsilon)], \forall \xi \in \partial F(t) \tag{3.15}
\end{equation*}
$$

For any $0<t \leq \frac{1}{p}\left(\frac{\delta(\varepsilon)}{c_{\infty}}\right)^{p}$ define the set

$$
S_{t}=\left\{u \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right):\|u\|^{p}<p t\right\}
$$

where $c_{\infty}>0$ denotes the best constant in the embedding $W^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right)$.
Note that $u \in S_{t}$ implies that $\|u\|_{\infty} \leq \delta(\varepsilon)$; indeed, we have $\|u\|_{\infty} \leq c_{\infty}\|u\|<$ $c_{\infty}(p t)^{1 / p} \leq \delta(\varepsilon)$. Fix $u \in S_{t}$; for a.e. $x \in \mathbb{R}^{N}$, Lebourg's mean value theorem and (3.15) imply the existence of $\xi_{x} \in \partial F\left(\theta_{x} u(x)\right)$ for some $0<\theta_{x}<1$ such that

$$
F(u(x))=F(u(x))-F(0)=\xi_{x} u(x) \leq\left|\xi_{x}\right| \cdot|u(x)| \leq \varepsilon|u(x)|^{p} .
$$

Consequently, for every $u \in S_{t}$ we have

$$
\begin{aligned}
\Phi_{1}(u) & =-\int_{\mathbb{R}^{N}} \alpha(x) F(u(x)) \mathrm{d} x \geq-\varepsilon \int_{\mathbb{R}^{N}} \alpha(x)|u(x)|^{p} \mathrm{~d} x \\
& \geq-\varepsilon\|\alpha\|_{L^{1}}\|u\|_{\infty}^{p} \geq-\varepsilon\|\alpha\|_{L^{1}} c_{\infty}^{p}\|u\|^{p} \\
& \geq-\varepsilon\|\alpha\|_{L^{1}} c_{\infty}^{p} p t .
\end{aligned}
$$

Therefore, for every $0<t \leq \frac{1}{p}\left(\frac{\delta(\varepsilon)}{c_{\infty}}\right)^{p}$ we have

$$
0 \geq \frac{\inf _{u \in S_{t}} \Phi_{1}(u)}{t} \geq-\varepsilon\|\alpha\|_{L^{1}} c_{\infty}^{p} p
$$

Since $\varepsilon>0$ is arbitrary, we obtain the required limit.

Proof of Theorem 3.2 We are going to apply Theorem 2.1 by choosing $X=W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right), \tilde{X}_{1}=$ $\tilde{X}_{2}=L^{\infty}\left(\mathbb{R}^{N}\right), \Lambda=[0,+\infty), h(t)=t^{p} / p, t \geq 0$.

Fix $g \in \mathcal{G}_{\tau}(\tau \geq 0), \lambda \in \Lambda, \mu \in[0, \lambda+1]$, and $c \in \mathbb{R}$. We prove that the functional $E_{\lambda, \mu}: W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
E_{\lambda, \mu}(u)=\frac{1}{p}\|u\|^{p}+\lambda \Phi_{1}(u)+\mu\left(g \circ \Phi_{2}\right)(u), \quad u \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right),
$$

satisfies the $(P S)_{c}$ condition.
Note first that the function $\frac{1}{p}\|\cdot\|^{p}+\lambda \Phi_{1}$ is coercive on $W_{\text {rad }}^{1, p}\left(\mathbb{R}^{N}\right)$. To prove this, let $0<\varepsilon<\left(p\|\alpha\|_{1} c_{\infty}^{p} \lambda\right)^{-1}$. Then, on account of $(\tilde{\mathbf{F}} 2)$, there exists $\delta(\varepsilon)>0$ such that

$$
F(t) \leq \varepsilon|t|^{p}, \quad \forall|t|>\delta(\varepsilon) .
$$

Consequently, for every $u \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{aligned}
\Phi_{1}(u) & =-\int_{\mathbb{R}^{N}} \alpha(x) F(u(x)) \mathrm{d} x \\
& =-\int_{\left\{x \in \mathbb{R}^{N}:|u(x)|>\delta(\varepsilon)\right\}} \alpha(x) F(u(x)) \mathrm{d} x-\int_{\left\{x \in \mathbb{R}^{N}:|u(x)| \leq \delta(\varepsilon)\right\}} \alpha(x) F(u(x)) \mathrm{d} x \\
& \geq-\varepsilon \int_{\left\{x \in \mathbb{R}^{N}:|u(x)|>\delta(\varepsilon)\right\}} \alpha(x)|u(x)|^{p} \mathrm{~d} x-\max _{|t| \leq \delta(\varepsilon)}|F(t)| \int_{\left\{x \in \mathbb{R}^{N}:|u(x)| \leq \delta(\varepsilon)\right\}} \alpha(x) \mathrm{d} x \\
& \geq-\varepsilon\|\alpha\|_{L^{1}} c_{\infty}^{p}\|u\|^{p}-\|\alpha\|_{L^{1}} \max _{|t| \leq \delta(\varepsilon)}|F(t)| .
\end{aligned}
$$

Now, we have

$$
\frac{1}{p}\|u\|^{p}+\lambda \Phi_{1}(u) \geq\left(\frac{1}{p}-\varepsilon \lambda\|\alpha\|_{L^{1}} c_{\infty}^{p}\right)\|u\|^{p}-\lambda\|\alpha\|_{L^{1}} \max _{|t| \leq \delta(\varepsilon)}|F(t)|,
$$

which clearly implies the coercivity of $\frac{1}{p}\|\cdot\|^{p}+\lambda \Phi_{1}$.
As an immediate consequence, the functional $E_{\lambda, \mu}$ is also coercive on $W_{\text {rad }}^{1, p}\left(\mathbb{R}^{N}\right)$. Therefore, it is enough to consider a bounded sequence $\left\{u_{n}\right\} \subset W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
E_{\lambda, \mu}^{\circ}\left(u_{n} ; v-u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \text { for all } v \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right), \tag{3.16}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ is a positive sequence such that $\varepsilon_{n} \rightarrow 0$. Since the sequence $\left\{u_{n}\right\}$ is bounded in $W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$, one can find an element $u \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$, and $u_{n} \rightarrow u$ strongly in $L^{\infty}\left(\mathbb{R}^{N}\right)$, due to Proposition 3.2.

Due to Lemma 1.1, for every $u, v \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{equation*}
E_{\lambda, \mu}^{\circ}(u ; v) \leq \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p-2} \nabla u \nabla v+|u|^{p-2} u v\right)+\lambda \Phi_{1}^{\circ}(u ; v)+\mu\left(g \circ \Phi_{2}\right)^{\circ}(u ; v) . \tag{3.17}
\end{equation*}
$$

Put $v=u$ in (3.16) and apply relation (3.17) for the pairs $(u, v)=\left(u_{n}, u-u_{n}\right)$ and $(u, v)=\left(u, u_{n}-u\right)$, we have that

$$
\begin{aligned}
I_{n} \leq & \varepsilon_{n}\left\|u-u_{n}\right\|-E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right)+\lambda\left[\Phi_{1}^{\circ}\left(u_{n} ; u-u_{n}\right)+\Phi_{1}^{\circ}\left(u ; u_{n}-u\right)\right] \\
& +\mu\left[\left(g \circ \Phi_{2}\right)^{\circ}\left(u_{n} ; u-u_{n}\right)+\left(g \circ \Phi_{2}\right)^{\circ}\left(u ; u_{n}-u\right)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
I_{n} \stackrel{\text { not. }}{=} & \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \\
& +\int_{\mathbb{R}^{N}}\left(\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right)\left(u_{n}-u\right) .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded in $W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$, we have that $\lim _{n \rightarrow \infty} \varepsilon_{n}\left\|u-u_{n}\right\|=0$. Fixing $z^{*} \in$ $\partial E_{\lambda, \mu}^{\circ}(u)$ arbitrarily, we have $\left\langle z^{*}, u_{n}-u\right\rangle \leq E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right)$. Since $u_{n} \rightarrow u$ weakly in $W_{\text {rad }}^{1, p}\left(\mathbb{R}^{N}\right)$, we have that $\liminf _{n \rightarrow \infty} E_{\lambda, \mu}^{\circ}\left(u ; u_{n}-u\right) \geq 0$. The functions $\Phi_{1}^{\circ}(\cdot ; \cdot)$ and $\left(g \circ \Phi_{2}\right)^{\circ}(\cdot ; \cdot)$ are upper semicontinuous functions on $L^{\infty}\left(\mathbb{R}^{N}\right)$. Since $u_{n} \rightarrow u$ strongly in $L^{\infty}\left(\mathbb{R}^{N}\right)$, the upper limit of the last four terms is less or equal than 0 as $n \rightarrow \infty$, see Lemma 1.1 d).

Consequently,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} I_{n} \leq 0 . \tag{3.18}
\end{equation*}
$$

Since $|t-s|^{p} \leq\left(|t|^{p-2} t-|s|^{p-2} s\right)(t-s)$ for every $t, s \in \mathbb{R}^{m}(m \in \mathbb{N})$ we infer that $\left\|u_{n}-u\right\|^{p} \leq I_{n}$. The last inequality combined with (3.18) leads to the fact that $u_{n} \rightarrow u$ strongly in $W_{\text {rad }}^{1, p}\left(\mathbb{R}^{N}\right)$, as claimed.

It remains to prove relation (2.1) from Theorem 2.1. On account of Proposition 3.4, this part can be completes in a similar way as we performed in the proof of Theorem 3.1, the only difference is the construction of the function u_{0} appearing after relation (3.5). In the sequel, we construct the corresponding function $u_{0} \in W_{\mathrm{rad}}^{1, p}\left(\mathbb{R}^{N}\right)$ such that $\Phi_{1}\left(u_{0}\right)<0$.

On account of ($\tilde{\alpha}$), one can fix $R>0$ such that $\alpha_{R}=\operatorname{essinf}_{|x| \leq R} \alpha(x)>0$. For $\left.\sigma \in\right] 0,1[$ define the function

$$
w_{\sigma}(x)= \begin{cases}0, & \text { if } x \in \mathbb{R}^{N} \backslash B_{N}(0, R) ; \\ \tilde{t}, & \text { if } x \in B_{N}(0, \sigma R) ; \\ \frac{\tilde{t}}{R(1-\sigma)}(R-|x|), & \text { if } x \in B_{N}(0, R) \backslash B_{N}(0, \sigma R),\end{cases}
$$

where $B_{N}(0, r)$ denotes the N-dimensional open ball with center 0 and radius $r>0$, and \tilde{t} comes from ($\tilde{\mathbf{F}} 3)$. Since $\alpha \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$, then $M(\alpha, R)=\sup _{x \in B_{N}(0, R)} \alpha(x)<\infty$. A simple estimate shows that

$$
-\Phi_{1}\left(w_{\sigma}\right) \geq \omega_{N} R^{N}\left[\alpha_{R} F(\tilde{t}) \sigma^{N}-M(\alpha, R) \max _{|t| \leq|\tilde{t}|}|F(t)|\left(1-\sigma^{N}\right)\right] .
$$

When $\sigma \rightarrow 1$, the right hand side is strictly positive; choosing σ_{0} close enough to 1 , for $u_{0}=w_{\sigma_{0}}$ we have $\Phi_{1}\left(u_{0}\right)<0$.

Due to Theorem 2.1, there exist a non-empty open set $A \subset \Lambda$ and $r>0$ with the property that for every $\lambda \in A$ there exists $\left.\left.\mu_{0} \in\right] 0, \lambda+1\right]$ such that, for each $\mu \in\left[0, \mu_{0}\right]$ the functional $\mathcal{E}_{\lambda, \mu}^{\mathrm{rad}}=\frac{1}{p}\|\cdot\|^{p}+\lambda \Phi_{1}+\mu \Phi_{2}$ defined on $W_{\text {rad }}^{1, p}\left(\mathbb{R}^{N}\right)$ has at least three critical points in $W_{\text {rad }}^{1, p}\left(\mathbb{R}^{N}\right)$ whose $\|\cdot\|$-norms are less than r. Applying Proposition 3.3, the critical points of $\mathcal{E}_{\lambda, \mu}^{\text {rad }}$ are also critical points of $\mathcal{E}_{\lambda, \mu}$, thus, radially weak solutions of problem $\left(\tilde{P}_{\lambda, \mu}\right)$. Due to the embedding $W^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right)$, if $\tilde{r}=c_{\infty} r$, then the L^{∞}-norms of these elements are less than \tilde{r} which concludes our proof.

Acknowledgment We would like to thank the anonymous Referees for their useful remarks and comments. A. Kristály and Cs. Varga are supported by Grant PN II, ID_2162 and by Project PNCDI II/Idei/2008/ C_Exploratorie no. 55 from CNCSIS.

References

1. Arcoya, D., Carmona, J.: A nondifferentiable extension of a theorem of Pucci-Serrin and applications. J. Differ. Equ. 235(2), 683-700 (2007)
2. Bonanno, G.: Some remarks on a three critical points theorem. Nonlinear Anal. 54, 651-665 (2003)
3. Bonanno, G.: A critical points theorem and nonlinear differential problems. J. Global Optim. 28(34), 249-258 (2004)
4. Bonanno, G., Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearity. J. Differ. Equ. 244(12), 3031-3059 (2008)
5. Brézis, H.: Analyse Fonctionnelle-Théorie et Applications. Masson, Paris (1992)
6. Chang, K.C.: Variational methods for non-differentiable functionals and their applications to partial differential equations .J. Math. Anal. Appl. 80, 102-129 (1981)
7. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
8. Krawcewicz, W., Marzantowicz, W.: Some remarks on the Lusternik-Schnirelman method for nondifferentiable functionals invariant with respect to a finite group action. Rocky Mt. J. Math. 20, 10411049 (1990)
9. Kristály, A.: Infinitely many solutions for a differential inclusion problem in \mathbb{R}^{N}. J. Differ. Equ. 220, 511530 (2006)
10. Marano, S.A., Motreanu, D.: On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems. Nonlinear Anal. 48, 37-52 (2002)
11. Marano, S.A., Papageorgiou, N.S.: On a Neumann problem with p-Laplacian and non-smooth potential. Differ. Integral Equ. 19(11), 1301-1320 (2006)
12. Motreanu, D., Varga, Cs.: Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4, 17-33 (1997)
13. Pucci, P., Serrin, J.: A mountain pass theorem. J. Differ. Equ. 60, 142-149 (1985)
14. Ricceri, B.: On a three critical points theorem. Arch. Math. (Basel) 75, 220-226 (2000)
15. Ricceri, B.: Existence of three solutions for a class of elliptic eigenvalue problems. Math. Comput. Model. 32, 1485-1494 (2000)
16. Ricceri, B.: Three solutions for a Neumann problem. Topol. Methods Nonlinear Anal. 20, 275-282 (2002)
17. Ricceri, B.: A three critical points theorem revisited. Nonlinear Anal. doi:10.1016/j.na.2008.04.010.
18. Ricceri, B.: Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set. Topol. Appl. 153, 3308-3312 (2006)

[^0]: A. Kristály (囚)

 Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania
 e-mail: alexandrukristaly @yahoo.com
 W. Marzantowicz

 Department of Mathematics, Adam Mickiewicz University, Poznan, Poland
 C. Varga

 Department of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

