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Abstract We extend a recent result of Ricceri concerning the existence of three critical
points of certain non-smooth functionals. Two applications are given, both in the theory of
differential inclusions; the first one concerns a non-homogeneous Neumann boundary value
problem, the second one treats a quasilinear elliptic inclusion problem in the whole R

N .
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1 Introduction and prerequisites

It is a simple exercise to show that a C1 function f : R → R having two local minima has
necessarily a third critical point. However, once we are dealing with functions defined on a
multi-dimensional space, the problem becomes much deeper. Motivated mostly by various
real-life phenomena coming from Mechanics and Mathematical Physics, the latter problem
has been treated by several authors, see Pucci-Serrin [13], Ricceri [14–17], Marano-Motreanu
[10], Arcoya-Carmona [1], Bonanno [3,2], Bonanno-Candito [4].

The aim of the present paper is to give an extension of the very recent three critical points
theorem of Ricceri [17] to locally Lipschitz functions, providing also two applications in
partial differential inclusions; the first one for a non-homogeneous Neumann boundary value
problem, the second one for a quasilinear elliptic inclusion problem in R

N .
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In order to do that, we recall two results which are crucial in our further investigations.
The first result is due to Ricceri [18] guaranteeing the existence of two local minima for a
parametric functional defined on a Banach space. Note that no smoothness assumption is
required on the functional.

Theorem 1.1 ([18], Theorem 4) Let X be a real, reflexive Banach space, let � ⊆ R be an
interval, and let ϕ : X × � → R be a function satisfying the following conditions:

1. ϕ(x, ·) is concave in � for all x ∈ X;
2. ϕ(·, λ) is continuous, coercive and sequentially weakly lower semicontinuous in X for

all λ ∈ �;
3. β1 := sup

λ∈�

inf
x∈X

ϕ(x, λ) < inf
x∈X

sup
λ∈�

ϕ(x, λ) =: β2.

Then, for each σ > β1 there exists a non-empty open set �0 ⊂ � with the following
property: for every λ ∈ �0 and every sequentially weakly lower semicontinuous function
� : X → R, there exists µ0 > 0 such that, for each µ∈ ]0, µ0[, the function ϕ(·, λ)+µ�(·)
has at least two local minima lying in the set {x ∈ X : ϕ(x, λ) < σ }.

The second main tool in our argument is the “zero-altitude” Mountain Pass Theorem for
locally Lipschitz functionals, due to Motreanu-Varga [12]. Before giving this result, we are
going to recall some basic properties of the generalized directional derivative as well as of
the generalized gradient of a locally Lipschitz functional which will be used later.

Let (X, ‖ · ‖) be a Banach space.

Definition 1.1 A function � : X → R is locally Lipschitz if, for every x ∈ X , there exist a
neighborhood U of x and a constant L > 0 such that

|�(y) − �(z)| ≤ L‖y − z‖ for all y, z ∈ U.

Although it is not necessarily differentiable in the classical sense, a locally Lipschitz
function admits a derivative, defined as follows:

Definition 1.2 The generalized directional derivative of � at the point x ∈ X in the direction
y ∈ X is

�◦(x; y) = lim sup
z→x, τ→0+

�(z + τ y) − �(z)

τ
.

The generalized gradient of � at x ∈ X is the set

∂�(x) = {x	 ∈ X	 : 〈x	, y〉 ≤ �◦(x; y) for all y ∈ X}.
For all x ∈ X , the functional �◦(x, ·) is subadditive and positively homogeneous; thus,

due to the Hahn–Banach theorem, the set ∂�(x) is nonempty. In the sequel, we resume the
main properties of the generalized directional derivatives.

Lemma 1.1 [7] Let �,
 : X → R be locally Lipschitz functions. Then,

(a) �◦(x; y) = max{〈ξ, y〉 : ξ ∈ ∂�(x)};
(b) (� + 
)◦(x; y) ≤ �◦(x; y) + 
◦(x; y);
(c) (−�)◦(x; y) = �◦(x;−y); and �◦(x; λy) = λ�◦(x; y) for every λ > 0;
(d) The function (x, y) 
→ �◦(x; y) is upper semicontinuous.

The next definition generalizes the notion of critical point to the non-smooth context:
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Definition 1.3 [6] A point x ∈ X is a critical point of � : X → R, if 0 ∈ ∂�(x), that is,

�◦(x; y) ≥ 0 for all y ∈ X.

For every c ∈ R, we denote by Kc = {x ∈ X : 0 ∈ ∂�(x), �(x) = c}.
Remark 1.1 Note that every local extremum point of the locally Lipschitz function � is a
critical point of � in the sense of Definition 1.3.

Definition 1.4 The locally Lipschitz function � : X → R satisfies the Palais–Smale condi-
tion at level c ∈ R (shortly, (P S)c-condition), if every sequence {xn} in X such that

(P S1) �(xn) → c as n → ∞;
(P S2) there exists a sequence {εn} in ]0,+∞[ with εn → 0 such that

�◦(xn; y − xn) + εn‖y − xn‖ ≥ 0 for all y ∈ X, n ∈ N,

admits a convergent subsequence.

We recall now the zero-altitude version of the Mountain Pass Theorem, due to Motreanu-
Varga [12].

Theorem 1.2 Let E : X → R be a locally Lipschitz function satisfying (P S)c for all c ∈ R.
If there exist x1, x2 ∈ X, x1 
= x2 and r ∈ (0, ‖x2 − x1‖) such that

inf{E(x) : ||x − x1|| = r } ≥ max{E(x1), E(x2)},
and we denote by 
 the family of continuous paths γ : [0, 1] → X joining x1 and x2, then

c := inf
γ∈


max
s∈[0,1] E(γ (s)) ≥ max{E(x1), E(x2)}

is a critical value for E and Kc\{x1, x2} 
= ∅.

2 Main result: non-smooth Ricceri’s multiplicity theorem

For every τ ≥ 0, we introduce the following class of functions:
(Gτ ) : g ∈ C1(R, R) is bounded, and g(t) = t for any t ∈ [−τ, τ ].
The main result of this paper is the following.

Theorem 2.1 Let (X, ‖ · ‖) be a real reflexive Banach space and X̃i (i = 1, 2) be two
Banach spaces such that the embeddings X ↪→ X̃i are compact. Let � be a real interval,
h : [0,∞) → [0,∞) be a non-decreasing convex function, and let �i : X̃i → R (i = 1, 2)

be two locally Lipschitz functions such that Eλ,µ = h(‖ · ‖) + λ�1 + µg ◦ �2 restricted to
X satisfies the (P S)c-condition for every c ∈ R, λ ∈ �,µ ∈ [0, |λ| + 1] and g ∈ Gτ , τ ≥ 0.

Assume that h(‖ · ‖) + λ�1 is coercive on X for all λ ∈ � and that there exists ρ ∈ R such
that

sup
λ∈�

inf
x∈X

[h(‖x‖) + λ(�1(x) + ρ)] < inf
x∈X

sup
λ∈�

[h(‖x‖) + λ(�1(x) + ρ)]. (2.1)

Then, there exist a non-empty open set A ⊂ � and r > 0 with the property that for every
λ ∈ A there exists µ0 ∈ ]0, |λ| + 1] such that, for each µ ∈ [0, µ0] the functional Eλ,µ =
h(‖ · ‖) + λ�1 + µ�2 has at least three critical points in X whose norms are less than r.
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Proof Since h is a non-decreasing convex function, X � x 
→ h(‖x‖) is also convex;
thus, h(‖ · ‖) is sequentially weakly lower semicontinuous on X , see Brézis [5, Corollaire
III.8]. From the fact that the embeddings X ↪→ X̃i (i = 1, 2) are compact and �i : X̃i →
R (i = 1, 2) are locally Lipschitz functions, it follows that the function Eλ,µ as well as
ϕ : X × � → R (in the first variable) given by

ϕ(x, λ) = h(‖x‖) + λ(�1(x) + ρ)

are sequentially weakly lower semicontinuous on X .
The function ϕ satisfies the hypotheses of Theorem 1.1. Fix σ > sup

�

inf
X

ϕ and consider

a nonempty open set �0 with the property expressed in Theorem 1.1. Let A = [a, b] ⊂ �0.
Fix λ ∈ [a, b]; then, for every τ ≥ 0 and gτ ∈ Gτ , there exists µτ > 0 such that, for any

µ ∈ ]0, µτ [, the functional Eτ
λ,µ = h(‖ · ‖) + λ�1 + µgτ ◦ �2 restricted to X has two local

minima, say xτ
1 , xτ

2 , lying in the set {x ∈ X : ϕ(x, λ) < σ }.
Note that

⋃

λ∈[a,b]
{x ∈ X : ϕ(x, λ) < σ } ⊂ {x ∈ X : h(‖x‖) + a�1(x) < σ − aρ}

∪ {x ∈ X : h(‖x‖) + b�1(x) < σ − bρ}.

Because the function h(‖ · ‖) + λ�1 is coercive on X , the set on the right-side is bounded.
Consequently, there is some η > 0, such that

⋃

λ∈[a,b]
{x ∈ X : ϕ(x, λ) < σ } ⊂ Bη, (2.2)

where Bη = {x ∈ X : ‖x‖ < η}. Therefore,

xτ
1 , xτ

2 ∈ Bη.

Now, set c	 = sup
t∈[0,η]

h(t) + max{|a|, |b|} sup
Bη

|�1| and fix r > η large enough such that for

any λ ∈ [a, b] to have

{x ∈ X : h(‖x‖) + λ�1(x) ≤ c	 + 2} ⊂ Br . (2.3)

Let r	 = sup
Br

|�2| and correspondingly, fix a function g = gr∗ ∈ Gr∗ . Let us define

µ0 = min
{
|λ| + 1, 1

1+sup |g|
}

. Since the functional Eλ,µ = Er∗
λ,µ = h(‖ · ‖) + λ�1 +

µgr∗ ◦ �2 restricted to X satisfies the (P S)c condition for every c ∈ R, µ ∈ [0, µ0], and
x1 = xr∗

1 , x2 = xr∗
2 are local minima of Eλ,µ, we may apply Theorem 1.2, obtaining that

cλ,µ = inf
γ∈


max
s∈[0,1] Eλ,µ(γ (s)) ≥ max{Eλ,µ(x1), Eλ,µ(x2)} (2.4)

is a critical value for Eλ,µ, where 
 is the family of continuous paths γ : [0, 1] → X joining
x1 and x2. Therefore, there exists x3 ∈ X such that

cλ,µ = Eλ,µ(x3) and 0 ∈ ∂ Eλ,µ(x3).
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If we consider the path γ ∈ 
 given by γ (s) = x1 + s(x2 − x1) ⊂ Bη we have

h(‖x3‖) + λ�1(x3) = Eλ,µ(x3) − µg(�2(x3))

= cλ,µ − µg(�2(x3))

≤ sup
s∈[0,1]

(h(‖γ (s)‖) + λ�1(γ (s)) + µg(�2(γ (s)))) − µg(�2(x3))

≤ sup
t∈[0,η]

h(t) + max{|a|, |b|} sup
Bη

|�1| + 2µ0 sup |g|

≤ c	 + 2.

From (2.3) it follows that x3 ∈ Br . Therefore, xi , i = 1, 2, 3 are critical points for Eλ,µ, all
belonging to the ball Br . It remains to prove that these elements are critical points not only
for Eλ,µ but also for Eλ,µ = h(‖ · ‖) + λ�1 + µ�2. Let x = xi , i ∈ {1, 2, 3}. Since x ∈ Br ,
we have that |�2(x)| ≤ r∗. Note that g(t) = t on [−r∗, r∗]; thus, g(�2(x)) = �2(x).
Consequently, on the open set Br the functionals Eλ,µ and Eλ,µ coincide, which completes
the proof. ��

3 Applications

3.1 A differential inclusion with non-homogeneous boundary condition

Let � be a non-empty, bounded, open subset of the real Euclidian space R
N , N ≥ 3, having

a smooth boundary ∂� and let W 1,2(�) be the closure of C∞(�) with the respect to the
norm

‖u‖ :=
(∫

�

|∇u(x)|2 +
∫

�

u2(x)

)1/2

.

Denote by 2	 = 2N
N−2 and 2

	 = 2(N−1)
N−2 the critical Sobolev exponent for the embedding

W 1,2(�) ↪→ L p(�) and for the trace mapping W 1,2(�) ↪→ Lq(∂�), respectively. If
p ∈ [1, 2	] then the embedding W 1,2(�) ↪→ L p(�) is continuous while if p ∈ [1, 2	[,
it is compact. In the same way for q ∈ [1, 2

	], W 1,2(�) ↪→ Lq(∂�) is continuous, and for
q ∈ [1, 2

	[ it is compact. Therefore, there exist constants cp, cq > 0 such that

‖u‖L p(�) ≤ cp‖u‖, and ‖u‖Lq (∂�) ≤ cq‖u‖, ∀u ∈ W 1,2(�).

Now, we consider a locally Lipschitz function F : R → R which satisfies the following
conditions:

(F0) F(0) = 0 and there exists C1 > 0 and p ∈ [1, 2	[ such that

|ξ | ≤ C1(1 + |t |p−1), ∀ξ ∈ ∂ F(t), t ∈ R; (3.1)

(F1) lim
t→0

max{|ξ | : ξ ∈ ∂ F(t)}
t

= 0;
(F2) lim sup

|t |→+∞
F(t)
t2 ≤ 0;

(F3) There exists t̃ ∈ R such that F(t̃) > 0.

Example 3.1 Let p ∈]1, 2] and F : R → R be defined by F(t) = min{|t |p+1, arctan(t+)},
where t+ = max{t, 0}. The function F enjoys properties (F0–F3).
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Let also G : R → R be another locally Lipschitz function satisfying the following condi-
tion:

(G) There exists C2 > 0 and q ∈ [1, 2
	[ such that

|ξ | ≤ C2(1 + |t |q−1), ∀ξ ∈ ∂G(t), t ∈ R. (3.2)

For λ,µ > 0, we consider the following differential inclusion problem, with inhomoge-
neous Neumann condition:

(Pλ,µ)

⎧
⎨

⎩

−�u + u ∈ λ∂ F(u(x)) in �;
∂u

∂n
∈ µ∂G(u(x)) on ∂�.

Definition 3.1 We say that u ∈ W 1,2(�) is a solution of the problem (Pλ,µ), if there exist
ξF (x) ∈ ∂ F(u(x)) and ξG(x) ∈ ∂G(u(x)) for a.e. x ∈ � such that for all v ∈ W 1,2(�) we
have

∫

�

(−�u + u)vdx = λ

∫

�

ξFvdx and
∫

∂�

∂u

∂n
vdσ = µ

∫

∂�

ξGvdσ.

The main result of this section reads as follows.

Theorem 3.1 Let F, G : R → R be two locally Lipschitz functions satisfying the conditions
(F0–F3) and (G). Then there exists a non-degenerate compact interval [a, b] ⊂ ]0,+∞[
and a number r > 0, such that for every λ ∈ [a, b] there exists µ0 ∈ ]0, λ + 1] such that for
each µ ∈ [0, µ0], the problem (Pλ,µ) has at least three distinct solutions with W 1,2-norms
less than r.

In the sequel, we are going to prove Theorem 3.1, assuming from now one that its assump-
tions are verified.

Since F, G are locally Lipschitz, it follows trough (3.1) and (3.2) in a standard way that
�1 : L p(�) → R (p ∈ [1, 2	]) and �2 : Lq(∂�) → R (q ∈ [1, 2

	]) defined by

�1(u) = −
∫

�

F(u(x))dx (u ∈ L p(�)) and �2(u) = −
∫

∂�

G(u(x))dσ (u ∈ Lq(∂�))

are well-defined, locally Lipschitz functionals and due to Clarke [7, Theorem 2.7.5], we have

∂�1(u)⊆ −
∫

�

∂ F(u(x))dx (u ∈ L p(�)), ∂�2(u)⊆ −
∫

∂�

∂G(u(x))dσ (u ∈ Lq(∂�)).

We introduce the energy functional Eλ,µ : W 1,2(�) → R associated to the problem (Pλ,µ),
given by

Eλ,µ(u) = 1

2
‖u‖2 + λ�1(u) + µ�2(u), u ∈ W 1,2(�).

Using the latter inclusions and the Green formula, the critical points of the functional Eλ,µ

are solutions of the problem (Pλ,µ) in the sense of Definition 3.1. Before proving Theorem
3.1, we need the following auxiliary result.

Proposition 3.1 limt→0+
inf{�1(u) : u ∈ W 1,2(�), ‖u‖2 < 2t}

t
= 0.
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Proof Fix p̃ ∈ ] max{2, p}, 2	[. Applying Lebourg’s mean value theorem and using (F0)
and (F1), for any ε > 0, there exists K (ε) > 0 such that

|F(t)| ≤ εt2 + K (ε)|t | p̃ for all t ∈ R. (3.3)

Taking into account (3.3) and the continuous embedding W 1,2(�) ↪→ L p̃(�) we have

�1(u) ≥ −εc2
2‖u‖2 − K (ε)c p̃

p̃‖u‖ p̃, u ∈ W 1,2(�). (3.4)

For t > 0 define the set St = {u ∈ W 1,2(�) : ‖u‖2 < 2t }. Using (3.4) we have

0 ≥ infu∈St �1(u)

t
≥ −2c2

2ε − 2 p̃/2 K (ε)c p̃
p̃ t

p̃
2 −1.

Since ε > 0 is arbitrary and since t → 0+, we get the desired limit. �

Proof of Theorem 3.1 Let us define the function for every t > 0 by

β(t) = inf

{
�1(u) : u ∈ W 1,2(�),

‖u‖2

2
< t

}
.

We have that β(t) ≤ 0, for t > 0, and Proposition 3.1 yields that

lim
t→0+

β(t)

t
= 0. (3.5)

We consider the constant function u0 ∈ W 1,2(�) by u0(x) = t̃ for every x ∈ �, t̃ being
from (F3). Note that t̃ 
= 0 (since F(0) = 0), so �1(u0) < 0. Therefore it is possible to
choose a number η > 0 such that

0 < η < −�1(u0)

[‖u0‖2

2

]−1

.

By (3.5) we get the existence of a number t0 ∈
(

0,
‖u0‖2

2

)
such that −β(t0) < ηt0. Thus

β(t0) >

[‖u0‖2

2

]−1

�1(u0)t0. (3.6)

Due to the choice of t0 and using (3.6), we conclude that there exists ρ0 > 0 such that

− β(t0) < ρ0 < −�1(u0)

[‖u0‖2

2

]−1

t0 < −�1(u0). (3.7)

Define now the function ϕ : W 1,2(�) × I → R by

ϕ(u, λ) = ‖u‖2

2
+ λ�1(u) + λρ0,

where I = [0,+∞). We prove that the function ϕ satisfies the inequality

sup
λ∈I

inf
u∈W 1,2(�)

ϕ(u, λ) < inf
u∈W 1,2(�)

sup
λ∈I

ϕ(u, λ). (3.8)

The function

I � λ 
→ inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 + �1(u))

]

is obviously upper semicontinuous on I. It follows from (3.7) that
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lim
λ→+∞ inf

u∈W 1,2(�)
ϕ(u, λ) ≤ lim

λ→+∞

[‖u0‖2

2
+ λ(ρ0 + �1(u0))

]
= −∞.

Thus we find an element λ ∈ I such that

sup
λ∈I

inf
u∈W 1,2(�)

ϕ(u, λ) = inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 + �1(u))

]
. (3.9)

Since −β(t0) < ρ0, it follows from the definition of β that for all u ∈ W 1,2(�) with ‖u‖2

2 < t0
we have −�1(u) < ρ0. Hence

t0 ≤ inf

{‖u‖2

2
: u ∈ W 1,2(�), −�1(u) ≥ ρ0

}
. (3.10)

On the other hand,

inf
u∈W 1,2(�)

sup
λ∈I

ϕ(u, λ) = inf
u∈W 1,2(�)

[‖u‖2

2
+ sup

λ∈I

(λ(ρ0 + �1(u)))

]

= inf
u∈W 1,2(�)

{‖u‖2

2
: −�1(u) ≥ ρ0

}
.

Thus inequality (3.10) is equivalent to

t0 ≤ inf
u∈W 1,2(�)

sup
λ∈I

ϕ(u, λ). (3.11)

We consider two cases. First, when 0 ≤ λ < t0
ρ0

, then we have that

inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 + �1(u))

]
≤ ϕ(0, λ) = λρ0 < t0.

Combining this inequality with (3.9) and (3.11) we obtain (3.8).
Now, if t0

ρ0
≤ λ, then from (3.6) and (3.7), it follows that

inf
u∈W 1,2(�)

[‖u‖2

2
+ λ(ρ0 + �1(u))

]
≤ ‖u0‖2

2
+ λ(ρ0 + �1(u0))

≤ ‖u0‖2

2
+ t0

ρ0
(ρ0 + �1(u0)) < t0.

It remains to apply again (3.9) and (3.11), which concludes the proof of (3.8).
Now, we are in the position to apply Theorem 2.1; we choose X = W 1,2(�), X̃1 = L p(�)

with p ∈ [1, 2∗[, X̃2 = Lq(∂�) with q ∈ [1, 2
∗[,� = I = [0,+∞), h(t) = t2/2, t ≥ 0.

Now, we fix g ∈ Gτ (τ ≥ 0), λ ∈ �, µ ∈ [0, λ + 1], and c ∈ R. We shall prove that the
functional Eλ,µ : W 1,2(�) → R given by

Eλ,µ(u) = 1

2
‖u‖2 + λ�1(u) + µ(g ◦ �2)(u), u ∈ W 1,2(�),

satisfies the (P S)c. Note that due to Lemma 1.1, we have for every u, v ∈ W 1,2(�) that

E◦
λ,µ(u; v) ≤ 〈u, v〉W 1,2 + λ�◦

1(u; v) + µ(g ◦ �2)
◦(u; v). (3.12)
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First of all, let us observe that 1
2‖ · ‖2 + λ�1 is coercive on W 1,2(�), due to (F2); thus,

the functional Eλ,µ is also coercive on W 1,2(�). Consequently, it is enough to consider a
bounded sequence {un} ⊂ W 1,2(�) such that

E◦
λ,µ(un; v − un) ≥ −εn‖v − un‖ for all v ∈ W 1,2(�), (3.13)

where {εn} is a positive sequence such that εn → 0. Because the sequence {un} is bounded,
there exists an element u ∈ W 1,2(�) such that un ⇀ u weakly in W 1,2(�), un → u strongly
in L p(�), p ∈ [1, 2∗[ (since W 1,2(�) ↪→ L p(�) is compact), and un → u strongly in
Lq(∂�), q ∈ [1, 2

∗[ (since W 1,2(�) ↪→ Lq(∂�) is compact). Using (3.13) with v = u and
apply relation (3.12) for the pairs (un, u − un) and (u, un − u), we have that

‖u − un‖2 ≤ εn‖u − un‖ − E◦
λ,µ(u; un − u) + λ[�◦

1(un; u − un) + �◦
1(u; un − u)]

+µ[(g ◦ �2)
◦(un; u − un) + (g ◦ �2)

◦(u; un − u)].
Since {un} is bounded in W 1,2(�), we clearly have that limn→∞ εn‖u − un‖ = 0. Now, fix
z∗ ∈ ∂ E◦

λ,µ(u); in particular, we have 〈z∗, un − u〉W 1,2 ≤ E◦
λ,µ(u; un − u). Since un ⇀ u

weakly in W 1,2(�), we have that lim infn→∞ E◦
λ,µ(u; un − u) ≥ 0. Now, for the remaining

four terms in the above estimation we use the fact that �◦
1(·; ·) and (g ◦ �2)

◦(·; ·) are upper
semicontinuous functions on L p(�) and Lq(∂�), respectively. Since un → u strongly in
L p(�), we have for instance lim supn→∞ �◦

1(un; u − un) ≤ �◦
1(u; 0) = 0; the remain-

ing terms are similar. Combining the above outcomes, we obtain finally that lim supn→∞
‖u − un‖2 ≤ 0, i.e., un → u strongly in W 1,2(�). It remains to apply Theorem 2.1 in order
to obtain the conclusion. �

Remark 3.1 Marano and Papageorgiou [11] studied a similar problem to (Pλ,µ) by con-
sidering the homogeneous case when G = 0 and the p-Laplacian operator �p instead of
the standard Laplacian �. By using a non-smooth mountain pass type argument (with zero
altitude), they guaranteed the existence of solutions for the studied problem.

3.2 A differential inclusion in R
N

Let p > 2 and F : R → R be a locally Lipschitz function such that

(F̃1) lim
t→0

max{|ξ | : ξ ∈ ∂ F(t)}
|t |p−1 = 0;

(F̃2) lim sup
|t |→+∞

F(t)

|t |p
≤ 0;

(F̃3) There exists t̃ ∈ R such that F(t̃) > 0, and F(0) = 0.

In this section we are going to study the differential inclusion problem

(P̃λ,µ)

{−�pu + |u|p−2u ∈ λα(x)∂ F(u(x)) + µβ(x)∂G(u(x)) on R
N ,

u(x) → 0 as |x | → ∞,

where p > N ≥ 2, the numbers λ,µ are positive, and G : R → R is any locally Lipschitz
function. Furthermore, we assume that β ∈ L1(RN ) is any function, and
(α̃) α ∈ L1(RN ) ∩ L∞

loc(R
N ), α ≥ 0, and supR>0 essinf |x |≤Rα(x) > 0.

The functional space where our solutions are going to be sought is the usual Sobolev space
W 1,p(RN ), endowed with the norm ‖u‖ = (∫

RN |∇u(x)|p + ∫
RN |u(x)|p

)1/p
.
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Definition 3.2 We say that u ∈ W 1,p(RN ) is a solution of problem (P̃λ,µ), if there exist
ξF (x) ∈ ∂ F(u(x)) and ξG(x) ∈ ∂G(u(x)) for a. e. x ∈ R

N such that for all v ∈ W 1,p(RN )

we have
∫

RN
(|∇u|p−2∇u∇v + |u|p−2uv)dx = λ

∫

RN
α(x)ξFvdx + µ

∫

RN
β(x)ξGvdx . (3.14)

Remark 3.2 (a) The terms in the right hand side of (3.14) are well-defined. Indeed, due to
Morrey’s embedding theorem, i.e., W 1,p(RN ) ↪→ L∞(RN ) is continuous (p > N ), we have
u ∈ L∞(RN ). Thus, there exists a compact interval Iu ⊂ R such that u(x) ∈ Iu for a.e.
x ∈ R

N . Since the set-valued mapping ∂ F is upper-semicontinuous, the set ∂ F(Iu) ⊂ R is
bounded; let CF = sup |∂ F(Iu)|. Therefore,

∣∣∣∣
∫

RN
α(x)ξFvdx

∣∣∣∣ ≤ CF‖α‖L1‖v‖∞ < ∞.

Similar argument holds for the function G.
(b) Since p > N , any element u ∈ W 1,p(RN ) is homoclinic, i.e., u(x) → 0 as |x | → ∞,

see Brézis [5, Théorème IX.12].

The main result of this section is

Theorem 3.2 Assume that p > N ≥ 2. Let α, β ∈ L1(RN ) be two radial functions, α

fulfilling (α̃), and let F, G : R → R be two locally Lipschitz functions, F satisfying the
conditions (F̃1–F̃3).Then there exists a non-degenerate compact interval [a, b] ⊂ ]0,+∞[
and a number r̃ > 0, such that for every λ ∈ [a, b] there exists µ0 ∈ ]0, λ + 1] such that for
each µ ∈ [0, µ0], the problem (P̃λ,µ) has at least three distinct, radially symmetric solutions
with L∞-norms less than r̃ .

Note that no hypothesis on the growth of G is assumed; therefore, the last term in (P̃λ,µ)

may have an arbitrary growth. However, assumption (α̃) together with (F̃3) guarantee the
existence of non-trivial solutions for (P̃λ,µ).

The proof of Theorem 3.2 is similar to that of Theorem 3.1; we will show only the differ-
ences. To do that, we introduce some notions and preliminary results.

Although the embedding W 1,p(RN ) ↪→ L∞(RN ) is continuous (due to Morrey’s theorem
(p > N )), it is not compact. We overcome this gap by introducing the subspace of radially
symmetric functions of W 1,p(RN ). The action of the orthogonal group O(N ) on W 1,p(RN )

can be defined by (gu)(x) = u(g−1x), for every g ∈ O(N ), u ∈ W 1,p(RN ), x ∈ R
N . It

is clear that this group acts linearly and isometrically; in particular ‖gu‖ = ‖u‖ for every
g ∈ O(N ) and u ∈ W 1,p(RN ). Defining the subspace of radially symmetric functions of
W 1,p(RN ) by

W 1,p
rad (RN ) = {u ∈ W 1,p(RN ) : gu = u for all g ∈ O(N )},

we can state the following result.

Proposition 3.2 [9] The embedding W 1,p
rad (RN ) ↪→ L∞(RN ) is compact whenever 2 ≤ N <

p < ∞.

Let �1,�2 : L∞(RN ) → R be defined by

�1(u) = −
∫

RN
α(x)F(u(x))dx and �2(u) = −

∫

RN
β(x)G(u(x))dx .
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Since α, β ∈ L1(RN ), the functionals �1,�2 are well-defined and locally Lipschitz, see
Clarke [7, p. 79-81]. Moreover, we have

∂�1(u) ⊆ −
∫

RN
α(x)∂ F(u(x))dx, ∂�2(u) ⊆ −

∫

RN
β(x)∂G(u(x))dx .

The energy functional Eλ,µ : W 1,p(RN ) → R associated to problem (P̃λ,µ), is given by

Eλ,µ(u) = 1

p
‖u‖p + λ�1(u) + µ�2(u), u ∈ W 1,p(RN ).

It is clear that the critical points of the functional Eλ,µ are solutions of the problem (P̃λ,µ) in
the sense of Definition 3.2; for a similar argument, see Kristály [9].

Since α, β are radially symmetric, then Eλ,µ is O(N )-invariant, i.e. Eλ,µ(gu) = Eλ,µ(u)

for every g ∈ O(N ) and u ∈ W 1,p(RN ). Therefore, we may apply a non-smooth version of
the principle of symmetric criticality, proved by Krawcewicz-Marzantowicz [8], whose form
in our setting is as follows.

Proposition 3.3 Any critical point of E rad
λ,µ = Eλ,µ|

W 1,p
rad (RN )

will be also a critical point of

Eλ,µ.

The following result can be compared with Proposition 3.1, although their proofs are
different.

Proposition 3.4 limt→0+
inf{�1(u) : u ∈ W 1,p

rad (RN ), ‖u‖p < pt}
t

= 0.

Proof Due to (F̃1), for every ε > 0 there exists δ(ε) > 0 such that

|ξ | ≤ ε|t |p−1, ∀t ∈ [−δ(ε), δ(ε)], ∀ξ ∈ ∂ F(t). (3.15)

For any 0 < t ≤ 1
p

(
δ(ε)
c∞

)p
define the set

St = { u ∈ W 1,p
rad (RN ) : ‖u‖p < pt},

where c∞ > 0 denotes the best constant in the embedding W 1,p(RN ) ↪→ L∞(RN ).
Note that u ∈ St implies that ‖u‖∞ ≤ δ(ε); indeed, we have ‖u‖∞ ≤ c∞‖u‖ <

c∞(pt)1/p ≤ δ(ε). Fix u ∈ St ; for a.e. x ∈ R
N , Lebourg’s mean value theorem and (3.15)

imply the existence of ξx ∈ ∂ F(θx u(x)) for some 0 < θx < 1 such that

F(u(x)) = F(u(x)) − F(0) = ξx u(x) ≤ |ξx | · |u(x)| ≤ ε|u(x)|p.

Consequently, for every u ∈ St we have

�1(u) = −
∫

RN
α(x)F(u(x))dx ≥ −ε

∫

RN
α(x)|u(x)|pdx

≥ −ε‖α‖L1‖u‖p∞ ≥ −ε‖α‖L1 cp∞‖u‖p

≥ −ε‖α‖L1 cp∞ pt.

Therefore, for every 0 < t ≤ 1
p

(
δ(ε)
c∞

)p
we have

0 ≥ infu∈St �1(u)

t
≥ −ε‖α‖L1 cp∞ p.

Since ε > 0 is arbitrary, we obtain the required limit. �
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Proof of Theorem 3.2 We are going to apply Theorem 2.1 by choosing X = W 1,p
rad (RN ), X̃1=

X̃2 = L∞(RN ),� = [0,+∞), h(t) = t p/p, t ≥ 0.
Fix g ∈ Gτ (τ ≥ 0), λ ∈ �,µ ∈ [0, λ + 1], and c ∈ R. We prove that the functional

Eλ,µ : W 1,p
rad (RN ) → R given by

Eλ,µ(u) = 1

p
‖u‖p + λ�1(u) + µ(g ◦ �2)(u), u ∈ W 1,p

rad (RN ),

satisfies the (P S)c condition.
Note first that the function 1

p ‖ · ‖p + λ�1 is coercive on W 1,p
rad (RN ). To prove this, let

0 < ε < (p‖α‖1cp∞λ)−1. Then, on account of (F̃2), there exists δ(ε) > 0 such that

F(t) ≤ ε|t |p, ∀|t | > δ(ε).

Consequently, for every u ∈ W 1,p
rad (RN ) we have

�1(u) = −
∫

RN
α(x)F(u(x))dx

= −
∫

{x∈RN :|u(x)|>δ(ε)}
α(x)F(u(x))dx −

∫

{x∈RN :|u(x)|≤δ(ε)}
α(x)F(u(x))dx

≥ −ε

∫

{x∈RN :|u(x)|>δ(ε)}
α(x)|u(x)|pdx − max|t |≤δ(ε)

|F(t)|
∫

{x∈RN :|u(x)|≤δ(ε)}
α(x)dx

≥ −ε‖α‖L1 cp∞‖u‖p − ‖α‖L1 max|t |≤δ(ε)
|F(t)|.

Now, we have

1

p
‖u‖p + λ�1(u) ≥

(
1

p
− ελ‖α‖L1 cp∞

)
‖u‖p − λ‖α‖L1 max|t |≤δ(ε)

|F(t)|,

which clearly implies the coercivity of 1
p ‖ · ‖p + λ�1.

As an immediate consequence, the functional Eλ,µ is also coercive on W 1,p
rad (RN ). There-

fore, it is enough to consider a bounded sequence {un} ⊂ W 1,p
rad (RN ) such that

E◦
λ,µ(un; v − un) ≥ −εn‖v − un‖ for all v ∈ W 1,p

rad (RN ), (3.16)

where {εn} is a positive sequence such that εn → 0. Since the sequence {un} is bounded in
W 1,p

rad (RN ), one can find an element u ∈ W 1,p
rad (RN ) such that un ⇀ u weakly in W 1,p

rad (RN ),
and un → u strongly in L∞(RN ), due to Proposition 3.2.

Due to Lemma 1.1, for every u, v ∈ W 1,p
rad (RN ) we have

E◦
λ,µ(u; v) ≤

∫

RN
(|∇u|p−2∇u∇v + |u|p−2uv) + λ�◦

1(u; v) + µ(g ◦ �2)
◦(u; v). (3.17)

Put v = u in (3.16) and apply relation (3.17) for the pairs (u, v) = (un, u − un) and
(u, v) = (u, un − u), we have that

In ≤ εn‖u − un‖ − E◦
λ,µ(u; un − u) + λ[�◦

1(un; u − un) + �◦
1(u; un − u)]

+µ[(g ◦ �2)
◦(un; u − un) + (g ◦ �2)

◦(u; un − u)],
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where

In
not.=

∫

RN
(|∇un |p−2∇un − |∇u|p−2∇u)(∇un − ∇u)

+
∫

RN
(|un |p−2un − |u|p−2u)(un − u).

Since {un} is bounded in W 1,p
rad (RN ), we have that limn→∞ εn‖u − un‖ = 0. Fixing z∗ ∈

∂ E◦
λ,µ(u) arbitrarily, we have 〈z∗, un − u〉 ≤ E◦

λ,µ(u; un − u). Since un ⇀ u weakly

in W 1,p
rad (RN ), we have that lim infn→∞ E◦

λ,µ(u; un − u) ≥ 0. The functions �◦
1(·; ·) and

(g ◦ �2)
◦(·; ·) are upper semicontinuous functions on L∞(RN ). Since un → u strongly

in L∞(RN ), the upper limit of the last four terms is less or equal than 0 as n → ∞, see
Lemma 1.1 d).

Consequently,

lim sup
n→∞

In ≤ 0. (3.18)

Since |t − s|p ≤ (|t |p−2t − |s|p−2s)(t − s) for every t, s ∈ R
m (m ∈ N) we infer that

‖un − u‖p ≤ In . The last inequality combined with (3.18) leads to the fact that un → u
strongly in W 1,p

rad (RN ), as claimed.
It remains to prove relation (2.1) from Theorem 2.1. On account of Proposition 3.4, this

part can be completes in a similar way as we performed in the proof of Theorem 3.1, the only
difference is the construction of the function u0 appearing after relation (3.5). In the sequel,
we construct the corresponding function u0 ∈ W 1,p

rad (RN ) such that �1(u0) < 0.
On account of (α̃), one can fix R > 0 such that αR = essinf|x |≤Rα(x) > 0. For σ ∈ ]0, 1[

define the function

wσ (x) =
⎧
⎨

⎩

0, if x ∈ R
N \BN (0, R);

t̃, if x ∈ BN (0, σ R);
t̃

R(1−σ)
(R − |x |), if x ∈ BN (0, R)\BN (0, σ R),

where BN (0, r) denotes the N -dimensional open ball with center 0 and radius r > 0, and t̃
comes from (F̃3). Since α ∈ L∞

loc(R
N ), then M(α, R) = supx∈BN (0,R) α(x) < ∞. A simple

estimate shows that

−�1(wσ ) ≥ ωN RN
[
αR F(t̃)σ N − M(α, R) max

|t |≤|t̃ |
|F(t)|(1 − σ N )

]
.

When σ → 1, the right hand side is strictly positive; choosing σ0 close enough to 1, for
u0 = wσ0 we have �1(u0) < 0.

Due to Theorem 2.1, there exist a non-empty open set A ⊂ � and r > 0 with the property
that for every λ ∈ A there exists µ0 ∈ ]0, λ + 1] such that, for each µ ∈ [0, µ0] the func-
tional E rad

λ,µ = 1
p ‖ · ‖p +λ�1 +µ�2 defined on W 1,p

rad (RN ) has at least three critical points in

W 1,p
rad (RN ) whose ‖ · ‖-norms are less than r . Applying Proposition 3.3, the critical points of

E rad
λ,µ are also critical points of Eλ,µ, thus, radially weak solutions of problem (P̃λ,µ). Due to

the embedding W 1,p(RN ) ↪→ L∞(RN ), if r̃ = c∞r , then the L∞-norms of these elements
are less than r̃ which concludes our proof. �
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